Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SEGN: Inferring real-time gene networks mediating phenotypic plasticity.

Identifieur interne : 000138 ( Main/Exploration ); précédent : 000137; suivant : 000139

SEGN: Inferring real-time gene networks mediating phenotypic plasticity.

Auteurs : Libo Jiang [République populaire de Chine] ; Christopher H. Griffin [États-Unis] ; Rongling Wu [République populaire de Chine, États-Unis]

Source :

RBID : pubmed:33005313

Abstract

The capacity of an organism to alter its phenotype in response to environmental perturbations changes over developmental time and is a process determined by multiple genes that are co-expressed in intricate but organized networks. Characterizing the spatiotemporal change of such gene networks can offer insight into the genomic signatures underlying organismic adaptation, but it represents a major methodological challenge. Here, we integrate the holistic view of systems biology and the interactive notion of evolutionary game theory to reconstruct so-called systems evolutionary game networks (SEGN) that can autonomously detect, track, and visualize environment-induced gene networks along the time axis. The SEGN overcomes the limitations of traditional approaches by inferring context-specific networks, encapsulating bidirectional, signed, and weighted gene-gene interactions into fully informative networks, and monitoring the process of how networks topologically alter across environmental and developmental cues. Based on the design principle of SEGN, we perform a transcriptional plasticity study by culturing Euphrates poplar, a tree that can grow in the saline desert, in saline-free and saline-stress conditions. SEGN characterize previously unknown gene co-regulation that modulates the time trajectories of the trees' response to salt stress. As a marriage of multiple disciplines, SEGN shows its potential to interpret gene interdependence, predict how transcriptional co-regulation responds to various regimes, and provides a hint for exploring the mass, energetic, or signal basis that drives various types of gene interactions.

DOI: 10.1016/j.csbj.2020.08.029
PubMed: 33005313
PubMed Central: PMC7516210


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SEGN: Inferring real-time gene networks mediating phenotypic plasticity.</title>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Griffin, Christopher H" sort="Griffin, Christopher H" uniqKey="Griffin C" first="Christopher H" last="Griffin">Christopher H. Griffin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33005313</idno>
<idno type="pmid">33005313</idno>
<idno type="doi">10.1016/j.csbj.2020.08.029</idno>
<idno type="pmc">PMC7516210</idno>
<idno type="wicri:Area/Main/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000085</idno>
<idno type="wicri:Area/Main/Curation">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000085</idno>
<idno type="wicri:Area/Main/Exploration">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SEGN: Inferring real-time gene networks mediating phenotypic plasticity.</title>
<author>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Griffin, Christopher H" sort="Griffin, Christopher H" uniqKey="Griffin C" first="Christopher H" last="Griffin">Christopher H. Griffin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computational and structural biotechnology journal</title>
<idno type="ISSN">2001-0370</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The capacity of an organism to alter its phenotype in response to environmental perturbations changes over developmental time and is a process determined by multiple genes that are co-expressed in intricate but organized networks. Characterizing the spatiotemporal change of such gene networks can offer insight into the genomic signatures underlying organismic adaptation, but it represents a major methodological challenge. Here, we integrate the holistic view of systems biology and the interactive notion of evolutionary game theory to reconstruct so-called systems evolutionary game networks (SEGN) that can autonomously detect, track, and visualize environment-induced gene networks along the time axis. The SEGN overcomes the limitations of traditional approaches by inferring context-specific networks, encapsulating bidirectional, signed, and weighted gene-gene interactions into fully informative networks, and monitoring the process of how networks topologically alter across environmental and developmental cues. Based on the design principle of SEGN, we perform a transcriptional plasticity study by culturing Euphrates poplar, a tree that can grow in the saline desert, in saline-free and saline-stress conditions. SEGN characterize previously unknown gene co-regulation that modulates the time trajectories of the trees' response to salt stress. As a marriage of multiple disciplines, SEGN shows its potential to interpret gene interdependence, predict how transcriptional co-regulation responds to various regimes, and provides a hint for exploring the mass, energetic, or signal basis that drives various types of gene interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33005313</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2001-0370</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>18</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Computational and structural biotechnology journal</Title>
<ISOAbbreviation>Comput Struct Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>SEGN: Inferring real-time gene networks mediating phenotypic plasticity.</ArticleTitle>
<Pagination>
<MedlinePgn>2510-2521</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.csbj.2020.08.029</ELocationID>
<Abstract>
<AbstractText>The capacity of an organism to alter its phenotype in response to environmental perturbations changes over developmental time and is a process determined by multiple genes that are co-expressed in intricate but organized networks. Characterizing the spatiotemporal change of such gene networks can offer insight into the genomic signatures underlying organismic adaptation, but it represents a major methodological challenge. Here, we integrate the holistic view of systems biology and the interactive notion of evolutionary game theory to reconstruct so-called systems evolutionary game networks (SEGN) that can autonomously detect, track, and visualize environment-induced gene networks along the time axis. The SEGN overcomes the limitations of traditional approaches by inferring context-specific networks, encapsulating bidirectional, signed, and weighted gene-gene interactions into fully informative networks, and monitoring the process of how networks topologically alter across environmental and developmental cues. Based on the design principle of SEGN, we perform a transcriptional plasticity study by culturing Euphrates poplar, a tree that can grow in the saline desert, in saline-free and saline-stress conditions. SEGN characterize previously unknown gene co-regulation that modulates the time trajectories of the trees' response to salt stress. As a marriage of multiple disciplines, SEGN shows its potential to interpret gene interdependence, predict how transcriptional co-regulation responds to various regimes, and provides a hint for exploring the mass, energetic, or signal basis that drives various types of gene interactions.</AbstractText>
<CopyrightInformation>© 2020 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Libo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Griffin</LastName>
<ForeName>Christopher H</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Comput Struct Biotechnol J</MedlineTA>
<NlmUniqueID>101585369</NlmUniqueID>
<ISSNLinking>2001-0370</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Dynamic transcriptional plasticity</Keyword>
<Keyword MajorTopicYN="N">Euphrates poplar</Keyword>
<Keyword MajorTopicYN="N">Gene regulatory networks</Keyword>
<Keyword MajorTopicYN="N">Phenotypic plasticity</Keyword>
<Keyword MajorTopicYN="N">Salt stress</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>44</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33005313</ArticleId>
<ArticleId IdType="doi">10.1016/j.csbj.2020.08.029</ArticleId>
<ArticleId IdType="pii">S2001-0370(20)30382-2</ArticleId>
<ArticleId IdType="pmc">PMC7516210</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Evol Biol. 2014 May;27(5):866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24724972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(18):4511-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25041245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Feb 28;15:167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24581002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Mar;164(3):1443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 4;331(6017):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asian J Androl. 2016 Sep-Oct;18(5):704-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27427552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Feb;24(4):710-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25604587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2013 Dec;246(2):326-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24176667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Dec 12;115(6):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2009;8:Article 9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19222392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):888-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1950 Jan;36(1):48-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16588946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 10;10(9):e0137701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Aug;199(3):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24010138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Stat Assoc. 2014 Apr 2;109(506):700-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25061254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2019 Mar 7;9(3):969-982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30679247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2011 Sep 22;278(1719):2705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21676977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Aug 15;4(8):e1000117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Nov 1;26(21):2721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2020 Jun 17;41(4):515-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31241128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Sep;18(18):3763-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2012 Mar;13(2):162-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Oct 6;167(2):313-324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Sep;20(9):586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26205171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2019 Aug 07;10:720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31481970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):357-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e28110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22132225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2009 Jul;22(7):1435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jul;32(7):1767-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25750178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 05;10(3):e0118691</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25742175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):473-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 18;6:24524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27087393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Aug;23(8):706-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29764727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1992 Apr;46(2):390-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Nov;208(3):668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26108441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(18):4438-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25208504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Sep 08;15:772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25199446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Oct;180(2):821-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 May;39(3):505-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pékin</li>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
</noRegion>
<name sortKey="Jiang, Libo" sort="Jiang, Libo" uniqKey="Jiang L" first="Libo" last="Jiang">Libo Jiang</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</country>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Griffin, Christopher H" sort="Griffin, Christopher H" uniqKey="Griffin C" first="Christopher H" last="Griffin">Christopher H. Griffin</name>
</region>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000138 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000138 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33005313
   |texte=   SEGN: Inferring real-time gene networks mediating phenotypic plasticity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33005313" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020